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An essential step in geostatistical simulation and model validation is establishing representative 
distributions.  A representative distribution is required for rock type proportions and for each variable 
within each rock type.  These distributions must be constructed accounting for preferential clustering of 
sample locations, large-scale geologic trends and uncertainty in the sample statistics.  There are a number 
of techniques for declustering including cell declustering and accumulation of estimation weights.  Each 
technique has pros and cons.  We propose a unified approach that implements a wide array of declustering 
methods and integrates the results by an expert system.  There are four methods with a series of options – 
these results form the basis for the recommended representative distribution and the allowable tolerance. 

 

Introduction 

Geostatistical simulation is being used increasingly to assess uncertainty and the impact of heterogeneity on 
process performance/design.  Geostatistical simulation amounts to drawing realizations from a multivariate 
distribution model.  The histogram or univariate distribution is the most important input parameter of a 
multivariate distribution.  We also require a representative distribution to check alternative models and to 
ensure that inappropriate implementation decisions are not introducing bias. 

Review of Existing Methods 

There are many techniques for declustering.  They have pros and cons.  Some are useful in certain settings 
and some are not.  A central feature of all declustering schemes is the assignment of a non-negative weight 
to each data within the population.  Then, the weights are standardized to sum to one.  The cdf and all 
summary statistics are calculated with the weights.  Consider n data.  Equal weighting would amount to set 
each weight proportional to 1: 

 1, 1,...,i i nλ ∝ =  (1) 

The weights are standardized to sum to one before being used for cdf generation.  The weights are 
sometimes standardized to sum to the number of data for visualization and checking.   

Cell Declustering 

The technique of cell declustering is commonly used (Journel, 1983; Deutsch, 1989).  Cell declustering 
starts by dividing the volume of interest into a grid of cells l=1,…,L (see Figure 1).  The number of 
occupied cells are counted: Lo, Lo≤L, and the number of data in each occupied cell nlo, lo= l=1,…,Lo are also 
counted where 
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Each data is assigned a weight inversely proportional to the number of data in the same cell: 
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The weights will sum to the number of occupied cells Lo and are standardized as appropriate.  The choice of 
cell size is critical.  A good rule is to choose the cell size at the spacing of the data in the widely spaced 
areas.  The shape of the cells depends on the geometric configuration of the data.  The shape is adjusted to 
conform to major directions of preferential sampling.  Fixing the cell size and changing the origin often 
leads to different declustering weights.  This artifact is avoided by considering a number of different origin 
locations for each cell size.  The declustering weights are averaged for each origin offset.  Cell declustering 
is robust and stable in most situations. Its drawbacks stem from the subjectivity of cell size selection, and 
its sensitivity to trends and boundaries.  People tend to choose a too-large cell size.  Conventional practice 
of taking the cell size that leads to the minimum declustered mean may lead to a biased low result.  It is 
common to plot the declustered mean vs. the cell size for many different cell sizes.  An example of this plot 
is shown in Figure 2.  We use this plot in creating the output results for wide array declustering. 

 
Figure 1:  Example of 2-D cell declustering.   The area of interest is divided into a grid of cells.  The 
number of occupied cells is determined, in this case, 33.  Each data is then weighted inversely by the 
number of data in the cell.  This weight is standardized by the number of occupied cells.   
 

 
Figure 2:  Declustered mean vs. cell size.  This plot is commonly generated as a means to determine the 
most appropriate cell size for cell declustering.  This plot will form the basis for our wide array declustering 
output. 
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Volume of Influence 

The volume of influence could be calculated analytically; however, we normally consider a fine grid over 
the domain of interest and accumulate the number of times a data is closer to the nodel than any other data.  
The weight assigned to that data is proportional to the number of nodes closest to that data.   

Polygonal declustering, as this method is often called, is simple and easy to understand.  Though it appears 
objective, it is only truly applicable when the boundaries or limits of the volume of interest are well known.  
When these boundaries are not well known, the weights given to the edge or end samples are not accurate.  
This phenomenon is demonstrated in Figure 3.   

 

 
Figure 3:  An example of the weakness in polygonal declustering when the boundaries/limits are not well 
defined.  As the fine grid expands, more weight is given to those data located at the edge of the area of 
interest.  In this case, the edge data have low values meaning that as the grid expands the mean decreases. 
 
The declustered distribution is sensitive to both the grid size and the grid density.  In the wide array 
declustering program proposed herein, the user specifies each of these parameters.  The grid density can be 
any positive value, but it is recommended that it be from 1 to 3 where 1 creates a sparse grid and 3 
produces a denser grid.  Where computational time is not an issue, it is recommended that a denser grid be 
utilized.   
 
There are two ways for specifying the declustering grid boundaries.  The first way is to use a square grid 
with its size being limited by specifying a grid expansion factor which indicates how far the fine grid 
extends beyond the extents of the data.  Figure 3 was generated using grid expansion factors of 1.0 and 1.2 
respectively.  A grid expansion factor of 1.0 will align the edges of the grid precisely with the extents of the 
data.  As the expansion factor increases, so too does the size of the grid.  A larger grid gives more weight to 
the data near the edge of the field.  It has been observed that a grid expansion factor of 1.05 gives the best 
results.   
 
The second way to limit or specify the declustering grid size is to find the ‘loneliest’ or most outlying data 
and the distance from that data to its nearest neighbor as shown in Figure 4.  This distance value is then 
used to limit the distance at which a grid node can be assigned to a data point as shown in Figure 5.  
Though a grid node may be closest to a certain data, if it is farther away than this arbitrary distance, it will 
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not be added to the weighting of that data.  A more realistic example using more data is shown in Figure 6.  
Note that the mean is higher than the mean calculated in Figure 3 with the expanded grid.   
 

 
Figure 4:  The distance at which a node is assigned to a data is limited by finding the 'loneliest' data and 
the distance from that data to its nearest neighbor. 
 

 
Figure 5:   Only those nodes that are within the calculated distance are assigned to the data point. 
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Figure 6:  The distance at which a declustering grid node can be assigned to a data point is limited by the 

shortest distance to the 'loneliest' data. 

Ordinary Kriging 

Each location in the domain of interest is estimated with a local search neighborhood and ordinary kriging 
tuned for reasonable estimates.  The declustering weights are taken as the accumulated kriging weight that 
each data receives. 

 
all locations
within domain
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u

u  (5) 

Different amounts for the maximum amount of data used to generate an estimate are used to give an idea 
how the number of data used to perform estimation effects the declustered mean.  This is specified by the 
user. 

Global Ordinary Kriging 

A reasonable large scale trend is obtained by global ordinary kriging (or very large search neighborhoods) 
with a variogram arbitrarily set to have a 30-50% nugget effect and a range about 30-50% of the size of the 
domain (accounting for major anisotropy).  These weights could also be accumulated for declustering 
weights. 

WA_DECLUS Program 

The WA_DECLUS program was assembled from the kt3d and declus codes in GSLIB with significant 
modifications to proceed in parallel and post process the results.  The parameter file for the program is 
shown in Figure 7.  There are six groups of parameters.  The first group contains those parameters which 
are common to all four types of declustering.  This includes the data file, column numbers, trimming limits, 
a yes/no indicator for each declustering type, whether we are seeking a minimum or maximum declustered 
mean (depending on whether low-valued or high-valued areas were preferentially sampled), and the output 
files.  These parameters are specified in lines 6-13 respectively.   



 110-6 

The second group of parameters relate to the volume of influence or polygonal method of declustering.  
The grid density is specified first followed by the fine grid use parameter which tells the program whether 
the expanded square grid or a distance limit will be used for limiting the nodes assigned to ‘edge’ data 
points.  The third parameter in this section relates to the expanded square grid and specifies the grid 
expansion factor.  This number is in the range of 1.0-1.3.  It has been observed that a value of 1.05 gives 
optimal results.  The final parameter relates to the distance limited technique for assigning grid nodes to 
data points.  The user can either let the program determine the distance limit or can input the distance limit 
themselves.  These parameters are input in lines 16-19 respectively. 

The third group of parameters relates to cell declustering.  These are the same parameters utilized by the 
GSLIB program declus.  Input here are the Y and Z cell anisotropy, the number and range of cell sizes, 
and the number of origin offsets.  These parameters are input in lines 22-24 respectively. 

The fourth group of parameters specifies the grid necessary for the ordinary kriging and global ordinary 
kriging methods.  There is an option for the program to create this grid automatically which it will do if the 
first parameter in this section is set to zero.  If this parameter is not set to zero, the grid specification in the 
proceeding lines is used.  This is the typical GSLIB grid specification.  These parameters are specified in 
lines 27-30 respectively.    

The fifth group of parameters relates to the amount of data used to generate an estimate and the search used 
to identify these data for the ordinary kriging method.  The effect that using different amounts of data to 
estimate has on the declustering results can be observed by specifying different ‘maximum number of data’ 
cutoffs.  The search radii and angles for the search ellipsoid are common GSLIB parameters.  These 
parameters are specified in lines 33-35 respectively. 

The sixth group of parameters is simply the variogram specification as per typical GSLIB format.  The 
variogram specification begins on line 37.  The number of lines it takes to specify the variogram depends 
on the number of structures. 

 
Figure 7:  Parameter file for WA_DECLUS program. 
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Examples 

This program has been tested on many different data sets, all which gave expected results.  We show the 
results from three of those data sets herein.  

The first example comes from porosity data contained in the Amoco.dat data file.  There is a cluster of data 
in the north-east corner of the lease with the clustered data being in an area of high porosity.  The non-
declustered mean is therefore high and any declustered means will be lower than this.  By performing 
declustering we see that the mean was inflated by about 3% due to the clustered data.  This information is 
all displayed in Figure 8.   

The second example is based on gold grades from the red.dat data file.  The clustering in this area is not so 
obvious, but there are definite areas which have been more densely sampled, again in high-grades.  This 
has resulted in a higher-than-expected mean.  Using the wa_declus program shows us that the non-
declustered mean was overstated by about 22%.  The true mean is around 1.0g/t as opposed to 1.36g/t. 

The third and final example comes from the cluster.dat data file.  The clustering is, once again, quite 
obvious, but is now located throughout the area of interest.  The data is clustered in areas of high grade 
creating an exaggerated mean value.  Performing the different declustering techniques demonstrates that 
the non-declustered mean is indeed too high.  It is about 35% higher than the declustered means.  We can 
choose the most appropriate method and use the associated weights for generating a representative 
distribution.   

Conclusions 

Establishing the representative distribution for every variable is a longstanding problem.  The wide array 
solution presented here is practical and useful for this purpose.  A distribution of declustered means is 
created against which simulated realization averages and kriged model averages may be checked.   
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Figure 8:  The location  map and declustering results from the Amoco.dat data set.  There group of 
clustered data within high-valued areas has exaggerated the mean.  The declustering results have calculated 
more realistic mean values.  
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Figure 9: The location map and declustering results from the red.dat data set.  The clustering in the high-
grade areas has inflated the mean.  Declustering has weighted the data to produce a more practical mean. 
 

 
Figure 10: Location map and declustering results for the cluster.dat data file.  The high-grade clusters have 
exaggerated the mean.  Declustering has generated a better distribution with a lower mean. 
 


